about summary refs log tree commit diff stats
path: root/reference/C_Facharbeit_komplett/content/05_aufbau/sections
diff options
context:
space:
mode:
authorBenedikt Peetz <benedikt.peetz@b-peetz.de>2024-09-16 18:41:09 +0200
committerBenedikt Peetz <benedikt.peetz@b-peetz.de>2024-09-16 18:41:09 +0200
commitfc3ec276bc47d208beaf2d7602258e13de1385a1 (patch)
tree8c93831117f54c6c93831a2a0a055aeca7d7d95d /reference/C_Facharbeit_komplett/content/05_aufbau/sections
parentbuild(treewide): Update (diff)
downloadlpm-fc3ec276bc47d208beaf2d7602258e13de1385a1.zip
chore(references): Add testing data
Diffstat (limited to 'reference/C_Facharbeit_komplett/content/05_aufbau/sections')
-rw-r--r--reference/C_Facharbeit_komplett/content/05_aufbau/sections/auswertung.tex54
-rw-r--r--reference/C_Facharbeit_komplett/content/05_aufbau/sections/design.tex37
-rw-r--r--reference/C_Facharbeit_komplett/content/05_aufbau/sections/kalibrierung.tex59
-rw-r--r--reference/C_Facharbeit_komplett/content/05_aufbau/sections/material_und_methoden.tex48
-rw-r--r--reference/C_Facharbeit_komplett/content/05_aufbau/sections/vergleich_dieses_aufbaus_zu_dem_des_papers.tex7
5 files changed, 205 insertions, 0 deletions
diff --git a/reference/C_Facharbeit_komplett/content/05_aufbau/sections/auswertung.tex b/reference/C_Facharbeit_komplett/content/05_aufbau/sections/auswertung.tex
new file mode 100644
index 0000000..5b39717
--- /dev/null
+++ b/reference/C_Facharbeit_komplett/content/05_aufbau/sections/auswertung.tex
@@ -0,0 +1,54 @@
+%! TEX root = ../../../facharbeit.tex
+% LTeX: language=de-DE
+
+\newcommand{\imgplot}{\texttt{img2plot}}
+\newcommand{\Imgplot}{\texttt{img2plot}}
+
+\section{Auswertung}\label{sec:Auswertung} % 2024-04-28 (16:01)
+Die Auswertung hält sich nah an der Methode, die in \cite{cellPhoneRamanSpec} vorgeschlagen wird.
+
+Sie wird vollends durch ein Programm, \imgplot{} genannt, umgesetzt.
+
+Die Auswertung ist in vier Schritte unterteilt (welche sich aus \vref{chap:Code} ergeben):
+\begin{enumerate}
+	\item Das Bild wird so oft um \qty{90}{\degree} gedreht, bis die Spektrale Aufspaltung
+	      horizontal vorliegt. Die Anzahl der Rotationen müssen \imgplot{} angegeben
+	      werden.
+
+	\item Das Bild wird in seine einzelnen Spalten unterteilt. Für jede dieser Spalten
+	      wird ein Medianwert aus ihren Pixeln errechnet. Das Bild hat danach eine Höhe von
+	      einem Pixel, behält aber seine originale Breite. Ziel dieses Schrittes ist es,
+	      mögliche Unreinheiten oder Lichteinschläge des Bildes zu entfernen. Der Effekt
+	      dieser Normalisierung kann in \vref{fig:ProcessingMedianClean} gesehen werden.\label{subsec:MedianClean}
+
+	\item Mögliche Rayleigh Streuung wird am linken Bildrand ausgeblendet, indem eine
+	      spezifizierte Anzahl von Pixeln entfernt wird. Dies macht es möglich, störende
+	      Rayleigh Streuung aus dem resultierenden Graphen zu filtern. In
+	      \vref{sec:Design} wird dargelegt, warum der Verlust der niedrigen Wellennummer
+	      Verschiebungen akzeptable ist. Diese Ausblendung findet nur statt, wenn sie
+	      explizit spezifiziert wird. \label{subsec:RayleigGone}
+
+	\item Das Bild, welches ab \vref{subsec:MedianClean} als 2D Repräsentation vorliegt,
+	      wird in Datenpunkte für den resultierenden Graphen umgewandelt: \Imgplot{}
+	      durchläuft hierbei die Pixel des 2D Bildes von links nach rechts, normalisiert die
+	      Rot-, Grün- und Blauwerte (d.~h. sie werden durch ihren Maximalwert dividiert)
+	      und bildet aus diesen dann ein gemeinsames arithmetisches Mittel.  \Imgplot{}
+	      gibt diese dann vorformatiert als \LaTeX{} Code aus, damit das Diagramm direkt
+	      in einem (\LaTeX{}) Dokument eingebunden werden kann.
+\end{enumerate}
+
+\input{content/05_aufbau/figures/fullProcess.tex}
+
+Dieser Prozess ist exemplarisch in \Vref{fig:ProcessingPicture} dargestellt.
+
+\hr
+
+Da die Pixelzahlen völlig von der Qualität, in der das Bild aufgenommen wurde, abhängen,
+ist es notwendig eine Eichung vorzunehmen. Um zu bestimmen, welche Pixel Distanzen
+welchen Wellennummer-Verschiebungen zuzuordnen sind, wird ein Graph mit einer Substanz
+erstellt, von der ein Raman-Spektrum vorliegt. Dann werden die Peaks aufeinander
+verschoben, und eine Zuordnung ist ablesbar.
+
+Da aber die Aufnahmen in diesen Aufbau nicht nutzbar sind, ist eine Kalibrierung auch
+nicht möglich. Diese benötigt nämlich notwendigerweise ein Spektral Bild, aufgenommen in derselben
+Qualität, um einen Vergleich der Werte zu ermöglichen.
diff --git a/reference/C_Facharbeit_komplett/content/05_aufbau/sections/design.tex b/reference/C_Facharbeit_komplett/content/05_aufbau/sections/design.tex
new file mode 100644
index 0000000..45ee543
--- /dev/null
+++ b/reference/C_Facharbeit_komplett/content/05_aufbau/sections/design.tex
@@ -0,0 +1,37 @@
+%! TEX root = ../../../facharbeit.tex
+% LTeX: language=de-DE
+
+\section{Design}\label{sec:Design} % 2024-04-25 (11:56)
+Wie schon kurz in \vref{chap:Einleitung} erwähnt, ist das Design des Spektrometers auf
+zwei Parameter fokussiert: Ein relativ günstiger und simpler, von komplexen Laseroptiken
+entfernter Aufbau, der es dem Raman Spektrometer ermöglicht auch in
+Unterrichtsszenarien angewendet zu werden.
+
+\input{content/05_aufbau/figures/DetektorComparison.tex}
+
+Es gibt zwei hauptsächliche Ansatzpunkte, um die obengenannten Ziele umzusetzen:
+\begin{enumerate}
+	\item Der Detektor muss notwendigerweise das Smartphone sein, da es als einziger
+	      Detektor zu einer hohen Wahrscheinlichkeit bereits verfügbar ist, und deshalb nicht zu
+	      den Materialien dazu gezählt werden muss. Damit werden die Kosten des Detektors aus
+	      dem Gesamtpreis entfernt.
+
+	      % FIXME: Not a perfect fit, but I really tried (for like 10+ minutes) <2024-04-28>
+	      \vspace*{250px}
+
+	\item Die Laseroptiken sind zum Teil redundant, sofern der Detektor
+	      einer rechtwinkligen Positionierung ($c$) unterzogen wird. In
+	      \vref{fig:DetektorPositioning} werden die verschiedenen möglichen Geometrien
+	      gezeigt. Wie in \cite{cellPhoneRamanSpec} erwähnt reduziert der Aufbau nach
+	      $(c)$ die ankommende Rayleigh Streuung, was es ermöglicht die sowohl bei $(a)$
+	      und $(b)$ notwendigen Rayleigh Sperrfilter zu entfernen.	Die Reduktion des
+	      ankommenden Streulichts, welche die Rayleigh Sperrfilter überflüssig macht,
+	      reduziert allerdings auch das ankommende Stokes (und anti Stokes) gestreute Licht.
+	      Dies ist allerdings durch eine längere Belichtungszeit und nachträgliche Entfernung
+	      der Rayleigh Streuung (wie in \vref{subsec:RayleigGone} gezeigt) auszugleichen,
+	      da eine sehr hohe Genauigkeit, bei den genannten Zielen, zu vernachlässigen ist.
+\end{enumerate}
+
+Da die Genauigkeit durch den -- geringen -- Anteil der Rayleigh Streuung, die die Aufnahme
+stört, schon reduziert wurde, erscheint es sinnvoll auch auf Kunststoffoptiken zu setzen,
+da diese sowohl günstiger als auch sicher vor Kratzern sind.
diff --git a/reference/C_Facharbeit_komplett/content/05_aufbau/sections/kalibrierung.tex b/reference/C_Facharbeit_komplett/content/05_aufbau/sections/kalibrierung.tex
new file mode 100644
index 0000000..7fef5da
--- /dev/null
+++ b/reference/C_Facharbeit_komplett/content/05_aufbau/sections/kalibrierung.tex
@@ -0,0 +1,59 @@
+%! TEX root = ../../../facharbeit.tex
+% LTeX: language=de-DE
+
+\section{Kalibrierung} % 2024-04-28 (15:05)
+Vor der Auswertung werden die Brennpunkte der beiden Linsen aufeinander eingestellt, indem man
+den Laser um \qty{90}{\degree} dreht, damit er direkt auf die Mitte der Streuung einfangenden
+Linse leuchtet. Diese leichte Veränderung ermöglicht es, den Gitterhalter, der normalerweise
+auf der Smartphone-Halterung angebracht ist, gegen ein weißes Blatt Papier zu tauschen, auf dem
+sich dann die Fokussierung des Lasers in Form eines grünen Punktes ersichtlich macht. Hierbei
+werden die Entfernungen zwischen den beiden Linsen und zwischen der letzten Linse und dem Gitter
+so lange verändert, bis der Laserpunkt möglichst scharf zu sehen ist. Zum Eigenschutz, und
+um den Laserpunkt, der sonst von dem Streulicht der Reflexion an dem Papier überdeckt wird,
+sehen zu können, wird eine Laserschutzbrille getragen.
+
+Nach Befestigung der Linsen- und des Smartphone-Halters durch die Schrauben in der Schiene,
+wird der Laser wieder auf den rechtwinklig positionierten Sockel gesetzt.  Um nun den Laser
+selbst auf die Probe zu fokussieren, wird dieser so weit nach vorne bewegt, bis in der Küvette
+(gefüllt mit Wasser) ein klarer Strahl ersichtlich ist. Auch dies wird mit einer Schutzbrille
+durchgeführt.
+
+\section{Aufnahme}
+Die wirkliche \emph{Aufnahme} des Spektral-Bildes soll an dieser Stelle durch
+Wiederanbringung des Gitters an dem Smartphone-Halter und Einlage des Smartphones leicht
+vonstattengehen.
+
+Um die Aufnahmen zu machen wird die OpenCamera \cite{openCamera} Anwendung auf einem Samsung
+A50 Smartphone genutzt. Sie wird durch F-Droid \cite{fDroid} installiert. Die Einstellungswerte
+(ISO, Verschlusszeit, etc.) werden der Automatik überlassen, da keine nennenswerten
+Unterschiede, durch Veränderung, ersichtlich sind.
+
+\begin{figure}[h]
+	\centering
+	\includegraphics[width=0.9\linewidth]{figures/own/d.jpg}
+	\caption{
+		Aufnahme des Smartphones, nachdem alle Schritte der Kalibrierung vollzogen waren.
+		Man beachte, dass das Gitter vor der Smartphone-Kameralinse eine Aufspaltung des
+		Lichts verursachen sollte, diese Aufspaltung allerdings nur minimal in der Verdopplung der
+		Linse erkennbar wird.
+	}
+	\label[Bild]{fig:AufgenommensBild}
+\end{figure}
+\begin{figure}[h]
+	\centering
+	\includegraphics[width=0.9\linewidth]{paper/input_cleaned.png}
+	\caption{
+		Aufnahme entnommen aus \cite{cellPhoneRamanSpec}. Man erkennt, im Gegensatz zu
+		\vref{fig:AufgenommensBild}, dass hier eine Aufspaltung des Lichts stattfand.
+	}
+	\label[Bild]{fig:SpektrumAusDemPaper}
+\end{figure}
+
+\Vref{fig:AufgenommensBild} zeigt eine der Aufnahmen, die nach der Kalibrierung,
+aufgenommen wurden.
+\Vref{fig:SpektrumAusDemPaper} hingegen zeigt eine Aufnahme, welche aus
+\cite{cellPhoneRamanSpec} entnommen wurde. Mögliche Gründe, woher diese Unterschiede in
+den Aufnahmen kommen, werden in \vref{chap:BewertungDerErgebnisse} weiter erörtert.
+
+Da die Auswertung abseits der initialen Bildaufnahme funktioniert, wird nachfolgend
+\vref{fig:SpektrumAusDemPaper} exemplarisch ausgewertet.
diff --git a/reference/C_Facharbeit_komplett/content/05_aufbau/sections/material_und_methoden.tex b/reference/C_Facharbeit_komplett/content/05_aufbau/sections/material_und_methoden.tex
new file mode 100644
index 0000000..a568ebb
--- /dev/null
+++ b/reference/C_Facharbeit_komplett/content/05_aufbau/sections/material_und_methoden.tex
@@ -0,0 +1,48 @@
+%! TEX root = ../../../facharbeit.tex
+% LTeX: language=de-DE
+
+\section{Material und Methoden}\label{sec:MaterialUndMethoden} % 2024-04-26 (19:29)
+Die Materialien und ihre jeweiligen Preise sind \vref{fig:materialien} zu entnehmen.  Insgesamt
+kosten die Bauteile ca. \qty{77.41}{\text{\euro}}.
+
+\input{content/05_aufbau/figures/materialien.tex}
+
+Neben diesen genannten Materialien wird auch noch eine Küvette benötigt, die auf allen vier Seiten
+klar ist. Dies ist notwendig, um die rechtwinklige Geometrie nutzen zu können.
+
+Den ausgebreiteten Prinzipien aus \vref{sec:Design} folgend, wird ein 3D Modell erstellt,
+welches als Plattform den Aufbau signifikant erleichtert. \Vref{fig:threeDModel} zeigt dieses
+Modell und die verschiedenen Teile.
+
+\input{./content/05_aufbau/figures/threeDModel.tex}
+
+Diese gedruckte Plattform bringt mehrere Vorteile mit sich:
+
+Zum einen ermöglicht sie, als durch OpenSCAD parametrisiertes, d.~h. mit Abhängigkeiten zwischen
+den einzelnen Größen der Bauteile versehenes Modell, eine leichte Anpassbarkeit an abgeänderte Bauteile
+(z.~B. ist der Aufwand einen \qty{1}{\centi\meter} längeren Laser zu nutzen, beschränkt auf die
+Veränderung der Längenangabe des Lasers in der \texttt{measurements.scad} Datei. Der Sockel,
+auf dem der Laser ruht, wird dann automatisch \qty{1}{\centi\meter} länger um sich an die vergrößerte
+Länge anzupassen.).
+
+Zum anderen kann das Modell die Größenunterschiede der verschiedenen Teile ausgleichen: Der
+Sockel des Lasers ist auf genau der Höhe, die benötigt wird, damit der Laserstrahl die Mitte
+der Küvette treffen kann, die die zu analysierende Flüssigkeit enthält.
+
+Die Linsen sind ebenfalls durch Stiele auf eine Höhe gebracht, die es ermöglicht,
+dass der Laserstrahl die Mittelpunkte der Linsen durchquert. (Man beachte hierbei den etwas
+längeren Stiel der kleineren Linse in \vref{fig:threeDModel}.).
+
+Natürlich sind die einzelnen Höhen auch an die Position der Smartphone-Linsen angepasst.
+
+\hr
+
+Neben diesen Vorteilen, die sich alleine von der Parametrisierung ableiten, sind andere
+ebenfalls wichtig:
+
+Die Linsen und die Smartphone-Halterung sind mit Ankern versehen, die es ermöglichen sie
+in der Schiene zu verschieben, um die einzelnen Brennweiten aneinander anzupassen. Ist dies
+geschehen, können in die Löcher, die in der Schienen Wand eingelassen sind, genutzt
+werden, um diese zu fixieren. Hierbei werden M5x20 Schrauben benutzt.
+
+\input{./content/05_aufbau/figures/builtModel.tex}
diff --git a/reference/C_Facharbeit_komplett/content/05_aufbau/sections/vergleich_dieses_aufbaus_zu_dem_des_papers.tex b/reference/C_Facharbeit_komplett/content/05_aufbau/sections/vergleich_dieses_aufbaus_zu_dem_des_papers.tex
new file mode 100644
index 0000000..d878906
--- /dev/null
+++ b/reference/C_Facharbeit_komplett/content/05_aufbau/sections/vergleich_dieses_aufbaus_zu_dem_des_papers.tex
@@ -0,0 +1,7 @@
+%! TEX root = ../../../facharbeit.tex
+% LTeX: language=de-DE
+
+% TODO: Vllt. schreibe ich hier noch etwas, aber es sieht zeitlich schlecht aus. <2024-04-30>
+
+% \section{Vergleich dieses Aufbaus zu dem des Papers} % 2024-04-28 (15:26)
+% Dies ist etwas text