1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
|
%! TEX root = ../../../facharbeit.tex
% LTeX: language=de-DE
\begin{figure}[tbhp]
\begin{tikzpicture}
\node at (0,0) [rectangle,draw] (a) {Detektor};
\node at (4,0) [rectangle,draw] (b) {Detektor};
\node at (8,0) [rectangle,draw] (c) {Detektor};
\def\offset{0.5}
\def\lineWidth{0.8}
\def\laserDualLine{0.05}
\def\laserLineWidth{0.6}
% a
\node [below] at ($(a) - (0,0.4)$) {$a$};
\draw[line width=\lineWidth pt] ($(a) + (\offset,\offset)$) -- ($(a) + (-\offset,\offset)$) node [left] {Rayleigh-Sperrfilter};
\draw[line width=\lineWidth pt] ($(a) + (\offset,\offset * 4)$) node [below right, align=left] {Dichroitischer\\ Spiegel} -- ($(a) + (-\offset,\offset * 2)$);
\node at ($(a) + (-\offset * 3, \offset * 3)$) [rectangle, draw] (aLaser) {Laser};
\node at ($(a) + (0, \offset * 9)$) [circle,draw] (aSample) {Probe};
\node at ($(a) + (0, \offset * 6)$) [ellipse, draw, label=left:Linse, minimum width=1cm] (aLens) {};
\coordinate (aLaserHit) at ($(a) + (0, \offset * 3)$);
\draw[red, ->, line width=\laserLineWidth] (aLaser) -- ($(aLaserHit) - (\laserDualLine,0)$);
\draw[red, ->, line width=\laserLineWidth] ($(aLaserHit) - (\laserDualLine,0)$) -- ($(aSample) - (\laserDualLine,0.58)$);
\draw[green,<-, line width=\laserLineWidth] (a) -- (aSample);
% b
\node [below] at ($(b) - (0,0.4)$) {$b$};
\coordinate (bFirst) at ($(b) + (\offset,\offset*2)$);
\coordinate (bSecond) at ($(b) + (\offset,\offset)$) ;
\draw[line width=\lineWidth pt] ($(b) + (-\offset,\offset*2)$) -- (bFirst);
\draw[line width=\lineWidth pt] ($(b) + (-\offset,\offset)$) -- (bSecond);
\node[right, align=left] at ($(bFirst)!0.5!(bSecond)$) (bRayleighThing) {Rayleigh-\\Sperrfilter};
\node at ($(b) + (0, \offset * 9)$) [circle,draw] (bSample) {Probe};
\node at ($(b) + (-0.3, \offset * 16)$) [rectangle, draw, rotate=90, anchor=north] (bLaser) {Laser};
\node at ($(b) + (0, \offset * 6)$) [ellipse, draw, label=left:Linse, minimum width=1cm] (bLens1) {};
\node at ($(b) + (0, \offset * 12)$) [ellipse, draw, label=left:Linse, minimum width=1cm] (bLens2) {};
\draw[red,->, line width=\laserLineWidth] (bLaser) -- ($(b) + (0, \offset * 2)$);
\draw[green, ->, line width=\laserLineWidth] ($(bSample) - (\laserDualLine, 0.60)$) -- ($(b) - (\laserDualLine, -0.2)$);
% c
\node [below] at ($(c) - (0,0.4)$) {$c$};
\node at ($(c) + (0, \offset * 9)$) [circle,draw] (cSample) {Probe};
\node at ($(c) + (0, \offset * 6)$) [ellipse, draw, label=left:Linse, minimum width=1cm] (cLens) {};
\node at ($(c) + (\offset * 2, \offset * 9)$) [ellipse, draw, rotate=90, anchor=north, label=right:Linse, minimum width=1cm] (cLens) {};
\node at ($(c) + (\offset * 5, \offset * 9)$) [rectangle, draw] (cLaser) {Laser};
\draw[red, ->, line width=\laserLineWidth] (cLaser) -- ($(cSample) + (0.68,0)$);
\draw[green,->, line width=\laserLineWidth] (cSample) -- (c);
\end{tikzpicture}
\caption{
Vergleich der drei verschiedenen Raman Spektroskop Geometrien: Eine ($a$)
zurückstreuende, ($b$) durchquerende oder ($c$) rechtwinklige Geometrie.
Die roten Strahlen symbolisieren das direkt von dem Laser ausgesandte und
Rayleigh gestreute Licht, die Grünen das von der Probe Raman gestreute Licht.
Die Abbildung ist Abbildung 1 aus \cite{cellPhoneRamanSpec} nachempfunden.
}\label{fig:DetektorPositioning}
\end{figure}
|