
A Kantian approach to Free Software
Benedikt Peetz

benedikt.peetz@b-peetz.de

Wednesday 20th March 2024

Contents
1 Introduction 3

1.1 Motivation . 3
1.2 Definitions . 3
1.3 Philosophical Premise . 4

1.3.1 Kant . 4
1.3.2 Kant’s Categorical Imperative . 4

2 Examination of morality 4

3 Conclusion 5

Copyright © Benedikt Peetz 2024

This work is licensed under the terms of the CC BY-SA 4.0 licence. The licence text can
be found online at http://creativecommons.org/licenses/by-sa/4.0/legalcode.

1

mailto:benedikt.peetz@b-peetz.de
http://creativecommons.org/licenses/by-sa/4.0/legalcode

I am grateful for the valuable insights and suggestions provided by both Silas Schöffel
and the large language model MixTral-8x7B, developed by Mistral AI, during the writing
of this paper.

A Kantian approach to Free Software

1 Introduction

1.1 Motivation
The argumentation for Free Software has ad-
hered to deontological ethics since its incep-
tion, as demonstrated by the Four Freedoms
outlined in subsection 1.2—rights that must
be categorically granted to all users.

This deontological influence continues in
every one of the four freedoms: For example,
Freedom 2, outlining the right to study the
program to see what it does and to trans-
parently decide whether to use the software,
emphasizes the importance of the autonomy
of a person.

But hitherto, Immanuel Kant, who has
modernized the concept of deontological eth-
ics and introduced the concept of autonomy,
has not been mentioned in the arguments
made by Richard Stallman. Consequently,That cer-

tainly
needs a
citation.

I will try to address that, by connecting
Kantian ideas (like Kant’s Categorical Im-
perative (CI)) directly to the ideals of Free
Software.

1.2 Definitions
As this essay will deal with the ethics of Free
Software, the terms around Free Software
should be defined:

Source Code computer instructions and
data definitions expressed in a form
suitable for input to an assembler, com-
piler, or other translator1.

Software computer programs, procedures,
and possibly associated documentation

1ISO/IEC/IEEE International Standard - Sys-
tems and software engineering–Vocabulary,
in: ISO/IEC/IEEE 24765:2017(E), Aug. 2017,
3.2741, doi: 10.1109/IEEESTD.2017.8016712,
p. 338.

and data pertaining to the operation
of a computer system2.

Software Library a software library con-
taining computer readable and human
readable information relevant to a soft-
ware development effort3.

Free Software Software, which adheres to
the four essential freedoms4. These
are:

0. The freedom to run the program
as you wish, for any purpose [. . .].

1. The freedom to study how the pro-
gram works, and change it so it
does your computing as you wish
[. . .]. Access to the source code
is a precondition for this.

2. The freedom to redistribute copies
so you can help others [. . .].

3. The freedom to distribute copies
of your modified versions to others
[. . .]. By doing this you can give
the whole community a chance to
benefit from your changes. Access
to the source code is a precondi-
tion for this.

Proprietary/nonfree Software Software
not following the definition of free
software (see subsection 1.2)5.

2Ibid., p. 329.
3Ibid., p. 332.
4GNU Project (ed.): What is Free Software?, Ver-

sion: 1.169, Feb. 2021, url: https://www.gnu.
org/philosophy/free-sw.html.en (visited
on 14/02/2024).

5Idem (ed.): Categories of Free and Non-
free Software, url: https : / / www . gnu .
org / philosophy / categories . html # non -
freeSoftware (visited on 16/03/2024).

Benedikt Peetz, 2024 3

https://doi.org/10.1109/IEEESTD.2017.8016712
https://www.gnu.org/philosophy/free-sw.html.en
https://www.gnu.org/philosophy/free-sw.html.en
https://www.gnu.org/philosophy/categories.html#non-freeSoftware
https://www.gnu.org/philosophy/categories.html#non-freeSoftware
https://www.gnu.org/philosophy/categories.html#non-freeSoftware

A Kantian approach to Free Software

1.3 Philosophical Premise
1.3.1 Kant

As I have mentioned in subsection 1.1 on
the preceding page, I intend to apply the
Kantian ethics to examine the morality of
Proprietary Software development. This
requires the knowledge about how Kantian
ethics can be used to evaluate the morality
of an action.

Firstly6, one needs to identify the maxims
behind the action being evaluated. This
could be something like: “It is acceptable
to write Proprietary Software”.

Secondly7, one needs to, following the CI,
decide, whether an action can be universal-
ized without causing contradictions. Kant
writes that “dies ist der Kanon der moralis-
chen Beurtheilung derselben überhaupt”8

This last step is effectively about applying
the CI to the moral question, leaving im-
moral or self-interest driven actions to being
exposed as not universalize-able—as theseIs this

word
correct?

actions would contradict themselves when
doing so. Kant additionally expresses the
further requirement, if no contradictions are
found, that the law must not be impossible
to will, as this will would contradict itself9.

Am I
done
here? 1.3.2 Kant’s Categorical Imperative

To achieve the aforementioned testing for
morality the CI used for the universalization
step needs to be defined because Kant has
formulated multiple ones, each one of them
focusing on slightly different areas. I will

6Cf. Immanuel Kant: Grundlegung zur Meta-
physik der Sitten, AA IV, 1785, url: http://
kant.korpora.org/Band4/421.html, pp. 421
– 424.

7Cf. ibid., p. 424.
8Ibid.
9Cf. ibid.

be working mostly with the “Kingdom of
Ends” CI10:

Demnach muß ein jedes vernün-
ftige Wesen so handeln, als ob
es durch seine Maximen jederzeit
ein gesetzgebendes Glied im allge-
meinen Reiche der Zwecke wäre.

I have chosen to focus on this particular CI,
as it highlights the importance of treating
every rational being as an end and not as a
mere means to an end. This interpretation
comes from the fact, that the “Kingdom of
Ends” (“Reich der Zwecke”) is a possible
Kingdom, where every being is an end in
itself never a means. A developer must Is the

last sen-
tence
here
really
adding
any-
thing?

therefore act, as if their maxims are treated
as universal law in a possible kingdom of
ends.

Does the
sentence
fit here?

2 Examination of morality
This essay is about whether the develop-
ment of Proprietary Software is morally ac-
ceptable. Applying the steps outlined in
subsubsection 1.3.1 means that we must
start with trying to encompass the max-
ims behind the action. Deriving from the
definition of Proprietary Software we must
conclude that there are four reasons to not
develop Free Software, as the developer does
apparently not care about providing the four
freedoms to their users. Thus, a possible
maxim could be: “I do not want my users
to follow one of the four freedoms”.

To be able to be more precise—and be-
cause access to the source code is a precon-
dition to two freedoms—, I am going to use
the following maxim for the further evalu-
ation: “I wish, that the source code is only
visible to me”.
10Ibid., p. 438.

Benedikt Peetz, 2024 4

http://kant.korpora.org/Band4/421.html
http://kant.korpora.org/Band4/421.html

A Kantian approach to Free Software

Consequently, we need to check for the
possibility of universalization for this maxim
as a universal law. Which is impossible to
achieve without producing a contradiction:

The developer will not have learned to de-
velop in a vacuum, she will have red sourceWrong

time
from?

code of her colleagues or of examples to
understand common patters.

Additionally, a software developer is com-
monly not interested in “re-inventing the
wheel”, as one might say. That means
that software products commonly depend
on other, so called, software libraries to func-
tion. These would be rather impractical to
work with, if the developer does not have
the at hand to check for invariants in the
code or to work around lacking documenta-
tion.Document

that
adding
the
source
code is
really
industry-
practice

But let us assume that the maxim means
source code of big applications and not ex-
amples or small snippets, that could be
shared between colleagues. And let us
also assume, that the external dependen-
cies somehow work without having access
to their source code.

Even in this—quite favourable—situation
would the application of the CI result in
an immoral action because of the second
condition, that needs to be fulfilled: The law
must actually be something wanted. And
this is where we must reach a clear position:
Nobody would want their access to others
people source code be cut.Is that

argu-
ment-
ation
correctly
applied?
Because
it sounds
a bit
like the
golden
rule.

Importantly, Proprietary Software is not
only defined by access to the source code.
Therefore, someone might actually allow
full insight into the source code and still
write Proprietary Software as the other two
freedoms, not depending on the source code,
could be violated. These are the rights to
run the program as you wish (freedom 0)
and the right to distribute copies of the
software (freedom 2). A maxim that could

express the first case would be: “I want
to control how a user runs my software”.
Universalizing this would be possible: Pro-
grams today even enforce certain limitations
on the way they are run (trying to run a
Linux-only program on Windows will obvi-
ously fail, as the program was not designed
for this foreign environment).

But, as before, this universalization at-
tempt would stop at the point, where the
motivation of said universalization must be
considered: As most developers need to run
quite a lot of different programs to develop
software, not one of these would accept such
a law, and thus not one would want that it
becomes a universal law.

The same question must be asked about
the second freedom, which could also be
rejected. In this case the maxim at play
would probably be: “I want to fully control
the distribution of my software, and do not
want copies of it to be shared”. This is diffi-
cult to universalize without contradictions,
as, like previously mentioned, software is
often depended on other software projects.
Thus, to distribute ones own software the de-
pendencies must agree to being distributed.
Which in turn means that the developer
does not actually control the distribution
of their software and that the maxim could
only be universalized if software dependen-
cies did not exist.

3 Conclusion
After having made a point that Kantian
ethics in fact suggest, that the development
of Proprietary Software is immoral, the fun-
damental problem must be mentioned, that
the whole line of argumentation relies on
the theoretical concepts proposed by Kant.
These have time and time again been cri-
tiqued for being too theoretical and for be-

Benedikt Peetz, 2024 5

A Kantian approach to Free Software

ing not really fit to application on real world
problems. The best example, that comes to
mind here is the known murderer asking a
friend of his victim for the location of the
victim. The friend must not lie, as universal-
ization through Kant’s CI results in a contra-
diction: An emergency lie would be defined
through the subject, it can consequently not
be universalized as an “emergency” is an
inherently subject concept. Thus, Kantian
ethics suggest telling the murderer the posi-
tion of the friend and would therefore result
in being responsible in the death of a close
one.I could

also men-
tion the
position
of Kant
regard-
ing “Nei-
gungen”
to other
people
and their
unim-
portance
in de-
cisions.

Possibly alternatives to Proprietary Soft-
ware include ideas like the “closed core”

Is this
the cor-
rect
name?

model, where only the core part of the soft-
ware is Proprietary Software and the sur-
rounding part is Free Software. These have
not been evaluated, as these seem to rather
uncommon today. One other alternative
to completely Free Software is the counter-
part to the “closed core” model, where the
core software is developed openly, but then
modified by the company behind it to add
telemetry and other non-free software. One
big example of this is the Chromium pro-
ject, where Chromium is Free Software, but
Google Chrome (Googles software product
derived from Chromium) is not. These cases
are impossible to evaluate directly, as the
software being developed is without a doubt
Free Software. Ergo, the action that must
really be evaluated is the act of forking (i.e.
copying the source code) of the Free Soft-
ware project, modifying it and turning it
into a Proprietary Software project before
releasing it.

Benedikt Peetz, 2024 6

A Kantian approach to Free Software

References
ISO/IEC/IEEE International Standard

- Systems and software engineering–
Vocabulary, in: ISO/IEC/IEEE
24765:2017(E), Aug. 2017, 3.2741,
doi: 10.1109/IEEESTD.2017.8016712.

Kant, Immanuel: Grundlegung zur Meta-
physik der Sitten, AA IV, 1785, url:
http://kant.korpora.org/Band4/421.
html.

Project, GNU (ed.): Categories of Free
and Nonfree Software, url: https://
www.gnu.org/philosophy/categories.
html # non - freeSoftware (visited on
16/03/2024).

Idem (ed.): What is Free Software?, Version:
1.169, Feb. 2021, url: https : / / www .
gnu.org/philosophy/free- sw.html.
en (visited on 14/02/2024).

The HPG Logo in the header has been
taken from this website: https://wpn.
hpg-speyer.de/

Benedikt Peetz, 2024 7

https://doi.org/10.1109/IEEESTD.2017.8016712
http://kant.korpora.org/Band4/421.html
http://kant.korpora.org/Band4/421.html
https://www.gnu.org/philosophy/categories.html#non-freeSoftware
https://www.gnu.org/philosophy/categories.html#non-freeSoftware
https://www.gnu.org/philosophy/categories.html#non-freeSoftware
https://www.gnu.org/philosophy/free-sw.html.en
https://www.gnu.org/philosophy/free-sw.html.en
https://www.gnu.org/philosophy/free-sw.html.en
https://wpn.hpg-speyer.de/
https://wpn.hpg-speyer.de/

	Introduction
	Motivation
	Definitions
	Philosophical Premise
	Kant
	Kant's Categorical Imperative

	Examination of morality
	Conclusion

